

Gabriel Barajas, Javier L. Lara, María Maza

applied to Coastal Engineering

(Beginners Course)

Breaking solitary waves on a mild slope (2D)

• Now we are going to create a 3D case from a 2D one:

 Copy a 2D case and change the folder name:

$ cp –r ~/OpenFOAM-v1812/tutorials/multiphase/interFoam/laminar/

waveExampleSolitary ~/IHFoamCourse/.

• Rename the case:

 Rename the case:

$ mv ~/IHFoamCourse/waveExampleStokesV ~/IHFoamCourse/synolakis

 Set OpenFOAM environment:
$ source ~/OpenFOAM/OpenFOAM-v1812/etc/bashrc

 Ensure everything you don’t need is deleted

$ cd ~/IHFoamCourse/synolakis

$./Allclean

Breaking solitary wave on
a mild slope (2D)

Geometric Domain

Numeric Domain

Numerical Setup

Run the Simulation

Post-processing

Mesh generation

Execute serial or parallel

Wave gauges, run-up, etc.

Boundary conditions, Initial conditions,
Numerical parameters, Pre-processing

Breaking solitary wave on
a mild slope (2D)

O
p
e
n
F
O

A
M

w
o
rk

fl
o
w

OpenFOAM case

0

constant

system

- alpha.water
- p_rgh
- U

- g
- transportProperties
- turbulenceProperties
- waveProperties

- blockMeshDict
- setFieldsDict
- snappyHexMeshDict
- extrudeMeshDict

- k
- epsilon
- nut

- fvSchemes
- fvSolution
- decomposeParDict
- controlDict

Breaking solitary wave on
a mild slope (2D)

• Update system/blockMeshDict to fit the laboratory set-up (synolakis 1986):

• Create the base mesh:

$ blockMesh

• Check the base mesh quality:

$ checkMesh

Breaking solitary wave on
a mild slope (2D)

• In the 0.org folder, display the VoF (alpha.water), the velocity (U) and the pressure (p_rgh) files :
alpha.water U p_rgh

Breaking solitary wave on
a mild slope (2D)

• Define and create a mild slope (using Autocad, Rhino, etc.).
• Check the .stl file; open Paraview, load the .stl file and check that the geometry fits the

base mesh:

$ touch ih.foam && paraview

Inlet outlet

top

ground

ramp

• Update the case to take into account the new geometry:

$ mkdir constant/triSurface
$ cp ramp.stl constant/triSurface/.

Breaking solitary wave on
a mild slope (2D)

• Using snappyHexMesh, as mesh generator to take the existing base mesh and remesh it to
fit the real geometry of the experiments.

• Copy snappyHexMeshDict from a tutorial:
$ cp –r ~/OpenFOAM-v1806/tutorials/multiphase/interFoam/RAS/mixerVesselAMI/system/

snappyHexMeshDict ~/IHFoamCourse/overSetWaves/system/.

• This intermediate mesh, is created from the dictionary system/snappyHexMeshDict:

- CastellatedMesh:
 Mesh Refinement in prescribed regions.
 Detection of the domain (surface and volume).
 Removal of cells outside the domain.

- Snap:
 Mesh morphing to follow the provided geometry.
 Layer addition could also be done.

Breaking solitary wave on
a mild slope (2D)

Minimun number of cells before going to the next level of resolution
(Number of buffer layers between different levels.)

Definition of the a new boundary (mesh refinement and removal of cells
around it).

Surface based refinements, based on two levels for every surface
(the first is the minimum level, the second level is the maximum level).

List of feature edges, that describe Sharp cornes, for refinement.

Breaking solitary wave on
a mild slope (2D)

• Refinement levels in OpenFOAM: increase in the refinement level reduces the cell size by half.

Level 0 Level 1 Level 2 Level 3

• Create the intermediate mesh:
$ snappyHexMesh -overwrite.

Cartesian points (x, y, z) to identify the volumen to retain the
final mesh.

Volume based refinements, based on two levels for every volume
(the first is the minimum level, the second level is the maximum level).

Breaking solitary wave on
a mild slope (2D)

• Ajust the mesh: as it has been created by snappyHexMesh with several cells in the spanwise
direction, it must be modified and extrude it to be purely two dimensional (2D).

• Extrude the intermediate mesh:
$ extrudeMesh

• Check the final mesh quality:
$ checkMesh

- sourcePatches: name of the patch to
extrude.

- exposedPatchName: name of the patch
opposed to the extruded one (sourcePatches)

- nLayers: number of divisions from
sourcePatches to exposedPatchName

- thickness: length of the extrusion.

Breaking solitary wave on
a mild slope (2D)

• Check your final mesh with Paraview:
$ paraview

• Load the ih.foam file and press “Apply”. (Remember to tick “Skip Zero Time”, as

the boundary conditions in the 0 folder have not been updated yet.)

Inlet

top

outlet

ramp

Breaking solitary wave on
a mild slope (2D)

• The final boundaries can be checked with Paraview (in the Mesh Regions dialog box) or they can
be checked in the constant/polyMesh/boundary file.

Breaking solitary wave on
a mild slope (2D)

• Once the final boundaries are known, update 0.org folder:

 alpha.water:

 p_rgh:

 U:

Breaking solitary wave on
a mild slope (2D)

• The case is defined as turbulent in:
$ more constant/turbulenceProperties

• Therefore, the turbulent kinematic energy (k), the turbulent dissipation (epsilon) and the
turbulent viscosity (nut) variables must be defined and added to the 0.org folder:

Breaking solitary wave on
a mild slope (2D)

k epsilon nut

Breaking solitary wave on
a mild slope (2D)

• Update the wave conditions in constant/waveProperties:

 WaveModel: Boussinesq solitary wave

 nPaddle: 1 single wave paddle (2d)

- waveHeight: H = 0.07 m.

- activeAbsorption: no (absorption yes/no at generation)

Breaking solitary wave on
a mild slope (2D)

• Update the initial set-up in system/setFieldsDict:

• Open Paraview and plot the initial set-up to ensure
eveything is correct:
$ paraview

• $ cp -r 0.org 0

$ setFields

Breaking solitary wave on
a mild slope (2D)

• Water and air properties are defined in:
$ more constant/transportProperties

• Gravity is defined in:
$ more constant/g

Breaking solitary wave on
a mild slope (2D)

Numerical Schemes:

• system/fvSchemes: is the file that sets the numerical scheme for the different terms.

Temporal discretization (Euler is a first order implicit
discretisation scheme).

Gradient derivative terms, that is surface normal gradient
terms (Gauss linear is second order discretisation scheme)

Divergence terms, such as advection terms and other terms
that are often diffusive in nature (Gauss linearUpwind
grad(U) is second order, Gauss vanLeer is second order
and Gauss upwind is a first order numerical scheme)

Breaking solitary wave on
a mild slope (2D)

Numerical Schemes:

Laplacian terms, such as the diffusion term in the momentum
equation (Gauss linear limited is second order accuracy,
values between 0 and 1 to handle a non-orthogonal mesh)

Cell to face interpolations of values (linear is second order
discretisation scheme)

Component of gradient normal to a cell face (limited is
second order accuracy, values between 0 and 1 to handle a
non-orthogonal mesh)

Breaking solitary wave on
a mild slope (2D)

Algorithm control:

• In system/fvSolutions are defined the equations solvers, tolerances and algorithms.

• Controls for MULES, solver of the VoF equation:
- nAlphaCorr: loops over VoF equation
- nAlphaSubcycles: number of sub-cycles within the VoF equation
- cAlpha: artificial compression velocity.

Breaking solitary wave on
a mild slope (2D)

Algorithm control:

• For each variable solved in the particular
equation, the type of solver and parameters
that are used by the solver must be defined.

• Normally, the last iteration (variables are
solved multiple times within a solution step) is
solved with different parameters.

Breaking solitary wave on
a mild slope (2D)

• PIMPLE algorithm solves the pressure-velocity coupling in the Navier-Stokes equations.

• PIMPLE algorithm combines PISO and SIMPLE.

- momentumPredictor: switch the control for solving the
momentum predictor.

- nCorrectors: number of times the algorithm solves the pressure
equation and momentum corrector in each step

- nOrthogonalCorrectors: specifies repeated solutions of the
pressure equation, used to update the explicit non-ortogonal
correction.

Algorithm control:

Breaking solitary wave on
a mild slope (2D)

• Define simulation parameters in system/controlDict

 Solver: interFoam (incompressible two phase flow)

 startTime (start time for the simulation),
endTime (end time for the simulation), deltaT
(time step of the simulation).

 writeInterval (controls the timing of write output),
purgeWrite (integer representing a limit on the
number of time directories that are stored).

 maxCo (maximun Courant Number),
maxAlphaCo (maximun Courant number for the
pase fields), maxDeltaT (upper limit of the time
step).

Breaking solitary wave on
a mild slope (2D)

• Update the runtime postprocessing sensors (system/controlDict)

 to get the iso-Surface of the free surface elevation:

Breaking solitary wave on
a mild slope (2D)

• Update the runtime postprocessing
sensors (system/controlDict)

 to get the free surface at some
specific positions along the
domain.

Breaking solitary wave on
a mild slope (2D)

• Decompose case:

- system/decomposeParDict: if we want to run our simulation in parallel we can
decompose it using this file:

 numberOfSubdomains: set the number of parts in which we are going to split
our domain.

 n: it should be equal to the number of subdomains

Run the command:

$ decomposePar

Breaking solitary wave on
a mild slope (2D)

• Run the case!

$ mpirun –np 2 interFoam –parallel > log.synolakis &

$ tail –f log.synolakis

$ kill PID number

• Postprocessing with Paraview:
$ paraFoam –touch

Breaking solitary wave on
a mild slope (2D)

Breaking solitary wave on
a mild slope (2D)

Gabriel Barajas, Javier L. Lara, María Maza

barajasg@unican.es

